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Abstract

This paper complements and extends a recent asymptotic treatment of the title problem by Gregory et al. (SIAM J.
Appl. Math. 59 (1999) 1080) who considered those solutions of the three-dimensional elasticity equations for an iso-
tropic spherical shell of constant thickness 2H that can be identified as membrane-like or shell-like. No attempt was
made to analyze the solutions of the governing equations in neighborhoods of radius O(H) of the concentrated surface
loads, i.e., three-dimensional slab-like solutions. Herein, formal asymptotic solutions are constructed for the shell-like
and slab-like solutions. (The membrane-like solutions of Gregory et al. are exact, simple, and explicit and require no
asymptotic treatment.) The analysis in the present paper reveals clearly how the three types of solutions blend into one
another and allows one to assess the errors in classical (Kirchhoff-Love) shell theory. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Exact three-dimensional solutions of shell-like bodies, though rare, are a valuable source of counter-
examples or conjectures concerning claims of the accuracy of two-dimensional shell theories. Such claims
become particularly questionable and difficult to assess near geometric or load discontinuities (edges or
points of application of concentrated loads, for example). The relative simplicity of the governing three-
dimensional equations of linear elasticity for a symmetrically loaded, elastically isotropic spherical shell
make it feasible to seek exact solutions. For example, Vilenskaia and Vorovich (1966) obtain closed-form
solutions for the eigensolutions (eigenvalues and eigenfunctions) which satisfy the Navier equations and
stress-free boundary conditions on the faces of a spherical shell. They then show that, as the relative
thickness of the shell approaches zero, the eigenvalues separate into three distinct groups. If the loads along
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the edges of a spherical cap are self-equilibrating, then the first group of eigenvalues yields null-stress
solutions. (The exact membrane-like solutions of Gregory et al. (1999) for a closed, point-loaded spherical
shell replace this first group of null solutions.) The second and third group of eigenvalues are identified with
shell-like and Saint-Venant (or slab-like) solutions. Expanding the eigensolutions in powers of a dimen-
sionless thickness parameter y = In(1 +¢) — In(1 — ¢), where ¢ = H /R, the ratio of the half thickness to
the mid-surface radius, Vilenskaia and Vorovich compute (in exquisite, pre-mathematica detail) the mid-
surface displacements in a closed spherical shell subject to self-equilibrating surface tractions and compare
their results with those of Vlasov’s shell theory. They also present series expansions for an open spherical
cap subject to self-equilibrating edge tractions. For other related Soviet work, see Vorovich (1975) and the
references therein.

Apparently unaware of the work of Vilenskaia and Vorovich (1966), Cheng and Angsirikul (1977) also
consider exact three-dimensional solutions for a spherical cap under axisymmetric, self-equilibrated edge
tractions. As Cheng and Angsirikul observe, the associated equation for the eigenvalues ... is indeed very
difficult to solve analytically or even numerically ...”. They therefore work with various truncations to
obtain approximate representations of the stresses prescribed along the edge of the cap. Note that neither
Vilenskaia and Vorovich nor Cheng and Angsirikul consider concentrated loads.

Finally, we mention the work of Gregory et al. (1999) who obtain simple, exact, closed-form membrane-
like solutions and exact eigenfunction expansions for the shell-like solutions for a closed spherical under
equal and opposite, radially outward surface point loads. Moreover, using the Betti Reciprocity Principle,
they obtain an explicit formula for the expansion coefficients (up to exponentially small terms). The shell-
like solutions are then expanded in powers of ¢ to obtain corrections to classical (Kirchhoff-Love) thin shell
theory. However, they make no attempt to find the elasticity solutions in the immediate vicinity of the point
loads “Because ... the stress singularities at the load points [make] the Saint Venant component ...
extremely complex and difficult to calculate.”

The present paper takes a different approach in the spirit of the three-dimensional perturbation analyses
of Johnson and Reissner (1958) for an end-loaded, semi-infinite circular cylindrical shell and of Cole (1968)
for a clamped, pressurized spherical cap. (Aside from these two relevant papers, there is an extensive lite-
rature — that we make no attempt to cite — going back at least to Goodier (1938), on deriving beam, plate,
and shell theories from the equations of three-dimensional elasticity via asymptotic methods.) With the
exception of the simple exact membrane-like solution found by Gregory et al. (1999), we look for asym-
ptotic expansions of the governing equations rather than of the exact solutions. Thus, we exploit the well-
known observation that, if a differential equation contains a small parameter, it is almost always simpler to
obtain an asymptotic expansion of the solution by working directly with the differential equation itself than
with its solution. (Indeed, for many differential equations, there may be no convenient representation for
the solution from which to extract an asymptotic expansion.)

In particular, we modify and extend the analysis of Gregory et al. (1999) by analyzing asymptotically the
behavior of the shell (a) in a shallow region near the concentrated loads but outside a cylindrical neigh-
borhood of radius O(H) and (b) in the immediate vicinity of the concentrated loads. We show, as is ex-
pected, that, to a first approximation, linear shallow shell theory holds in (a) and that the three-dimensional
elasticity equations for a slab hold in (b). This allows us to use the analysis of Simmonds (1990) for the
latter.

2. The governing equations
Let P denote the magnitude of each of the two opposed inward radial surface point loads and, in a

system of spherical coordinates, (Rp, ¢,0), let (P/GH)(u,w) denote the meridional and outward radial
components of displacement and (P/HRp)(s,, 09,04, 1) denote the non-vanishing physical components of



J.G. Simmonds, F.Y.M. Wan | International Journal of Solids and Structures 38 (2001) 68696887 6871

the stress tensor, | where G is the shear modulus. The governing dimensionless equations, taken from
Sokolnikoff (1956, p. 184), but in our notation, comprise the two equilibrium equations,

(poy), + 19— 09— 04+ 100t P =0, (2.1)

(pr)"p +op4+ (05 —0ag)cotd+1=0, (2.2)
and the four stress—displacement relations

20 +v)pw, =06, — v(og + ay), (2.3)

(1 =v)ag =2[(1 + v)w + ucot ¢ + vu y] + vo,, (2.4)

(1 =v)oy =2[(1 +v)w +uy + vu cot ¢ + vo,, (2.5)

We+pu,—u=r. (2.6)

In these equations, a comma denotes differentiation with respect to the subscript that follows and v is
Poisson’s ratio.

The boundary conditions are that the inner and outer surfaces of the shell be stress free, except for the
concentrated loads at p =1+4¢, ¢ =0, n. These loads may be accounted for by delta functions or
equivalently by equating the vertical force on an arbitrary spherical cap of angular width ¢ to the
downward load P. In spherical coordinates these conditions, in dimensionless form, read

o,(1te¢)=1(1%2¢,¢)=0, 0<¢p<m (2.7)

and

14¢

2msin ¢ [t(p,p)cosp — ay(p, P)singldp=¢, 0< ¢ <. (2.8)

1—-¢

2.1. The exact equilibrium equations of classical shell theory

Because classical shell theory involves only stress resultants and couples, which fall out naturally when
we perform certain (weighted) integrations through the thickness of the local three-dimensional equilibrium
equations, a meaningful discussion of pointwise errors reduces to examining the first-order corrections to
these quantities. Thus, integrating Eqs. (2.1) and (2.2) with respect to p from 1 — ¢ to 1 + ¢ and noting the
traction-free face conditions (2.7), we obtain

e'2(Q" + Qcot ¢) = ny + ny (2.9)
and

nf, + (ng — ng)cot  + &0 =0, (2.10)
where a dot (*) denotes differentiation with respect to ¢ and

1+¢
{ng,n¢,81/2Q} = / {O'(),G(p,‘[}dp. (211)
1—¢

The physical stress resultants are (P/H){ngy,ny, "/*Q}.

! Because of the simplifying factor p that we have introduced in these definitions, we call g, etc., pseudo-stress components.
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The single dimensionless moment equilibrium equation of classical shell theory is obtained by multi-
plying Eq. (2.2) by p — 1 and again integrating with respect to p from 1 — ¢ to 1 + ¢. Integrating the term
(p — 1)(pt) , by parts and noting the second face condition in Eq. (2.7), we have

&' * M3 + (M — My)cot ¢] = O, (2.12)
where
I+e
e{My, My} = (p — 1){00,04}dp. (2.13)

1-¢

The physical stress couples are P{My,M,}. The scalings introduced in the definitions (2.11) and (2.13)
guarantee that in shallow regions of the mid-surface, near to but excluding a neighborhood of the poles, O,
My, and M, are all O(1).

If we combine Egs. (2.9) and (2.10) to form an equation of local vertical equilibrium, we obtain, after an
integration,

2m sin ¢(e'/?Q cos ¢ — ny sin ¢) = e. (2.14)

This equation is simply Eq. (2.8) with the definitions (2.11) inserted.

3. The exact membrane-like solutions

From Egs. (B.1)-(B.6) of Gregory et al. (1999), we have
8nu = cot ¢ + singIn(cote/2), 8nw" =1+ cos ¢pIn(tang/2), (3.1)
and

o = =0,  4no}) = —4nol = csc’¢. (3.2)
Note that the membrane-like stresses satisfy the stress-free face boundary conditions exactly and that the
membrane displacements and stresses have the opposite sign of those of Gregory and Wan because we have
taken the concentrated loads to be positive inwards. Further, note by Egs. (2.11) and (2.13) that

{my ,ny, Q" My My} = (e/2m)csc p{1,—1,0,0,0}. (3.3)

3.1. Physical meaning of the three-dimensional membrane-like solution

Although the dimensionless membrane-like displacements and pseudo-stresses satisfy the field equations
and traction-free face conditions of three-dimensional elasticity, their singularities are too strong in
neighborhoods of the poles. For example, at the north pole (¢ = 0), the membrane-like pseudo-stresses are
not equilibrating a concentrated surface load but rather an inward radial body force (P/HR*p*)3(¢)/4n¢,
where 0 is the delta function(al). The function of the shell-like portion of the solution, that we consider next,
is to provide a transition whereby the membrane-like tangential forces near the poles are converted into a
statically equivalent vertical force, thus producing milder singularities as ¢ — 0, 7.
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4. The shell-like solution

Let
n(;:ng{—&—N@ and ng =nf¥—|—N¢. (41)
Then Egs. (2.9), (2.10), and (2.14) read
&'2(0" + Q cot ¢) = Ny + Ny, (4.2)
N; + (Ny — Ny)cot ¢ +&20 =0 (4.3)
and
¢'?0 = N, tan ¢. (4.4)

Substituting Eq. (4.4) into Eq. (4.3) and multiplying the resulting expression by tan ¢, we obtain
(Ny sec ¢)*sing = Ny — N, or Ny = (N, tan ¢)". (4.5)

We may reduce these basic shell equations (which, as yet, involve no approximations) still further as
follows.

Let
{e"Pu,w} = (1/2) 1+s{u(p,d);ﬁ) —u"(§),w(p, i) — w"()}dp (4.6)
and h
{7u,&w} = (3/2) /1_1:8(/0 = D{ulp, ¢;8), w(p, d;¢) }dp. (4.7)

The three-dimensional displacement-stress relations (2.4) and (2.5) then imply the shell constitutive rela-
tions,

(1 — )Ny = 4[(1 +v)w + & (u cot ¢ + vu®)] + veN,, (4.8)
(1 =v)Ny =4[l +v)w+ 2 (u® 4 vu cot )] + veN,, (4.9)
(1 =v)My = (4/3)[(1 + v)ew + el/z(g cot ¢ +vu®)] + veM,, (4.10)
(1= v)My = (4/3)[(1 + v)ew + &'/ (u® + vu cot @)] + veM,, (4.11)
where
I+e I+e
eN, = o,(p,p;e)dp and &M, = / (p—1)a,(p, ¢p;¢e)dp. (4.12)
l-¢ 1-¢

If we substitute Egs. (4.8) and (4.9) into Eq. (4.5), we obtain a differential equation involving u, and Ny that
may be written as a total derivative. Integrating and discarding an inessential constant, we find that

4"y = —N, tan ¢, (4.13)

and thus, by Egs. (4.4) and (4.5), we have the remarkably simple expression for the dimensionless hoop and
transverse shear stress resultants,

Ny = —4¢"’y* and Q= —4u. (4.14)
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Substituting the second term of Eq. (4.14) along with Egs. (4.10) and (4.11) into Eq. (2.12), we obtain the
following explicit formula for u in terms of u, w, and M,

3(1—v)u = —¢[(1 +v)e"’w" + u™ + u’cot ¢ — ucot > — vu + (3/4)ve'>M?]. (4.15)
An additional relation among u, w, and N, follows on substituting Egs. (4.8), (4.9), and (4.14) into Eq. (4.2):

e (usin )* = —[(1 +v)w + (v/4)eN,]sin ¢. (4.16)
This relation, in turn, implies that

Ny + N, =4(1 +v)w+ veN,. (4.17)

To proceed further, we must now perform asymptotic integration in the thickness direction. To this end,
we introduce the scaled independent variables

p=¢"a,  p=1+e (4.18)
and set

u=u"(p,d) +¢ ' PUGe),  w=w(p,d) +& W(xe), (4.19)

o, =8,(0Ge),  t=¢"T(2 ), (4.20)

oo = 0oy (p, ¢) +& 'Sy(a, (), ap =0y (p, )+ 'Sy(a, G e). (4.21)

Rearranging Egs. (2.1)—~(2.6) in the form and order in which we shall solve them, we have

201+ V)W, = —e[v(Sp + Sp) +2(1 + )W + &S,

= —ve(Sp + Sp) + &[S, + v{(Soy + Sp) + 2(1 + V)W) — &S, (4.22)
Uei=-Wy+eU—-Us+T)=-Wy+e((Wu+U+T)— LU —-U+T), (4.23)
(1 =v)Sy = 2[(1 + )W + o 'Ucotc(e"a) + vU,] + veS,, (4.24)
(1 =v)Sy =2[(1 + V)W + U, + va~' Ucote(e"/?a)] + veS,, (4.25)
T = —Spo+ 07" (Sy — Sy)cote(e! ) — e((T; +27), (4.26)
Spie=So+ 8y — [T + o ' Tcote(e?a)] — &(LS,).¢ (4.27)

where
cotcp = % and sinc¢ = { ¢ ii’nd)’ z i 8 (4.28)
The traction-free face conditions (2.7) read

Sy(a,£15¢) =T(o, £1;6) =0, O0<a< ¢ 2n. (4.29)

The self-equilibrating outward radial body force (P/HR?p*)F({;€)d()/2no that produces the shell-like
solutions discussed in this section, can be expressed in terms of limiting values of the dimensionless shell-
like stresses if we consider the equilibrium of the shell segment 0<a < f, —1<{< & Assuming
alS, (o, {3 &) — eaT (o, {; )] bounded, we have, because the inner surface of the shell is traction free,
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[ f{znlgga[m, Ge) — aSy(o e + F(G )k =0, —1<E<1. (430)
Thus, if the integrand is continuous,
F(Ge) = 2nlimofaSy (o, G ) — T2, G o). (4.31)
We now assume that our dimensionless unknowns U, ..., T have asymptotic expansions of the form
=10 +ef(50) + O(E), (4.32)

5. The lowest-order equations

0
From Eq. (4.22), W, = 0. Hence,

0 0
W = w(a), (5.1)
0
where W is unknown. Next, from Eq. (4.23), U, = —vov’(cx). Hence,
0 o 0,
U =u(a) — W (a), (5.2)

where u is unknown and a prime (') denotes differentiation with respect to «. Note that our formal, lowest
order, asymptotic expansions (5.1) and (5.2) deliver the same forms for the displacements as does the
Kirchhoff hypothesis.

From Egs. (4.6), (4.7), (4.18), (4.19), (5.1), and (5.2),

—w,  u=—w. (5.3)

[T

0
:1,{7

NS

Thus, Egs. (4.15) and (4.16) imply that

3(1—vu= (2w and (o) = —(1 +v)ow, (5.4)
where
_1d d

Eliminating & between the two equations in Eq. (5.4), we obtain the classical shallow shell equation for the
axisymmetric deformation of a spherical shell (Reissner, 1946a,b),

LW+ k=0, where k* = 3(1 —?). (5.6)

This is a Bessel-type equation whose solutions may be expressed in terms of the functions ber ko, bei ka,
ker ko, and keika. The first two of these grow exponentially as & — mfty and must be discarded; the re-
maining two decay exponentially. Thus,

& == ¢ ker ko + ¢ keiko, (5.7)

where ¢; and ¢, are unknown constants to be determined by the requirement that, to lowest order, the
thickness-averaged dimensionless meridional and radial displacements, ¥™ + &'y and w" + ¢ 'w, remain
finite as ¢ — 0.
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To this end, note that

& ker ko = —k* keiko, Zkeiko = k* ker kua, (5.8)

kerx = —In(1/2x) — y + (n/16)x* + O(x* Inx), (5.9)
and

keix = —(n/4) — (1/4)x*(In(1/2x) + 1 — 9) + O(x*Inx), (5.10)

where y = 0.5772 ... is Euler’s constant. Thus, ¢; = 0 and, from Egs. (5.2) and (5.3), the first term of Eq.
(5.4), and Egs. (5.6)—(5.10),

§ = (1/3)(1 (1 =) es(ker kz) = o [— e (1/3)(1 (1 =) +0()]. (5.11)
But from the first term of Eq. (3.1) and Eq. (4.18),

M =M = ¢V2[(1/8n)a! + O(elne)]. (5.12)
Hence,

e = (1/81t)\/3(1 —)(14+v)7 (5.13)
so that

W= (1/8m)/3(1 = v)(1 +v) keike = —(1/32)y/3(1 = v)(1 +v) " + O Ina). (5.14)

This expression at o« = 0, when multiplied by P/GH to obtain the dimensional outward radial displacement,
agrees with Eq. (5.13) of Koiter (1963).
We now compute the various dimensionless pseudo-stresses to lowest order. First, because.

(2W) = L — o\ (2w, (5.15)
it follows from Eqs. (4.18), (4.24), (4.25), (5.1)(5.4), and (5.6) that

(1= )8y = 2[(1 =)+ (1/3) (20) — t(a W 4] (5.16)
and

(1= S, = ~2[(1/3)o ! (W) + LV v ') (5.17)

Substituting these expressions into the lowest-order form of Eq. (4.26), we find that

(1/2)(1 =T, = g(g&)’. (5.18)

Integrating Eq. (5.18) with respect to { and applying the traction-free face condition in the second term of
Eq. (4.29), we obtain

(1—W)T = (£ - n(ew). (5.19)

To complete our lowest order approximations, note from Egs. (4.18) and (4.27) that

0

0 0 0
Sy =So+ Sy — o (aT) (5.20)

7‘1.
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But, from Egs. (5.16) and (5.17),

0 0 0 4 0

So+Se =2(1+v)[w—(1—v) (LW (5.21)
and, by Egs. (5.5), (5.6), and (5.19),

oc’l(oc%)d = (1— )&= 1)L =31 +v)(1 - P)w. (5.22)
Hence,

S, = —(1+ [+ 2(1 =) " — 320, (5.23)

Integrating and choosing the unknown function of integration so that the face condition in the first term of
Eq. (4.29) is satisfied (to lowest order), we find that

S, = (14+9)( = D{gw — (1 —v) " 2], (5.24)
Finally, from Egs. (4.8)(4.11), (4.18), and (5.4), we have

(1= )Ny = —(4/3)(L%)" = 4(1 — ) + (4/3)a"' (L), (5.25)

(1= V)Ny = —(4/3)a' (20, (5.26)

(1= )My = —(4/3) (@ + ), (5.27)

(1= )My = —(4/3) (%" +va ). (5.28)

These are the classical formulas for shallow spherical shells (Reissner, 1946a,b). Note from Egs. (4.17),
(5.27), and (5.28) the following simple expressions for the lowest-order approximations to the traces of the
dimensionless stress resultants and couples:

No+ Ny = 4(1 + )~ —(1/8)y/3(1 =) asa—0 (5.29)
and
(1 =) (Mo + M) = —(4/3)(1+ )L ~ (1/2)(1 =) Ina  as % — 0. (5.30)

From Eqgs. (4.31), (5.8)-(5.10), (5.14), (5.17), and (5.19), we find that the thickness distribution of the
self-equilibrating, shell-like line load is, to lowest order,

0
F(O)=@/4(C-1)+(1/2), (5.31)
where the last term in Eq. (5.31) represents that part of the self-equilibrating body force that cancels the line

load producing the membrane-like solutions of Section 3.
6. The first-order approximation (correction to classical shell theory)

The only additjonal quantities needed to compute the dimensionless stress resultants and couples to
second-order are U and W. From Egs. (4.22) and (5.21),
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1

W= —v[w—(1—v)"'tow]. (6.1)
Hence,
W = () — v[oh(a) — (1/2)(1 =) e, (6.2)

where w is unknown. Next, from Egs. (4.23), (5.1), (5.2), (5.4), (5.19), and (6.2),

1 1 0 0 0 1 1.0 0 —1 2 p 0y
Ur=-Wu+ W, +U+T=[-w—=02/3)(1—=v) Lw+viw+ (1/2)(1 =v) (2 =v)"LW]

= (4 + 2B +30C). (6.3)

Integrating, we have

U = (o) + [CA() + CB(3) + OC(@)], (6.4)

where th is unknown.
Next, from Eqgs. (4.6), (4.7), (4.12), (4.18)-(4.20), (5.2), (5.24), (6.2), and (6.4),

w=u+ /6w, w=w+(v/6)(1—v) LW, (6.5)
u=—[w+(1/15(1=v)'(T=v)w, w=—w, (6.6)
(1= 0N, = (4/3)(1+ V)L, M, = —(4/15)(1 + ). (6.7)

We do not need i in what follows.
We shall be content to compute the second-order corrections to the traces Ny + N, and M, + M,. Thus,
from Eq. (4.17) and the first term of Eq. (6.7),

1 1
No+ Ny =41+ v)[w+ (v/3)(1 —v) " 2w] (6.8)
and, from Egs. (4.10), (4.11), (4.18), (5.3), (5.6), (6.6), and the second term of Eq. (6.7),
1 1 0
(1= v)(My+ Mg) = (4/3)(1+ )20 + & + o~ — (1/3)otl] + 2vM,,
= (4/3)(1 +v)[=2Lw + (1/5)(1 = v)(7 + v)w + (1/3)ow]. (6.9)
We lack only an equation for ﬁ Noting that

af = (af Y = f' (Lf) = [ = L) = A L) 227,
(Lf) = Lf = (Lf), L@S) = 2L + 4 + ),

and using Eq. (5.3), the first term of Eqgs. (5.4) and (6.6), and the first term of Eq. (6.7), we find from Egs.
(4.15) and (4.16) that

(6.10)

1 0 1 1 1 0 0 0
31 —vu=—(1+v)w — @ +o v —o?u)+ (1/3)od + (v—2/3)u — (3v/4)M,

[Lw — (1/5)(2+ Tv)(1 = v)w — (1/3)aw]’ (6.11)

and
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0
ﬁ/ + ailé = —(1 —+ V)ﬁ+ (1/3)“& - (v/4)Nf)

= —(1+v)w+ (1/3)(1 = v) " [(1/3)a(LW) — v(1 + v).LW]. (6.12)
Substituting for ﬁ from Eq. (6.11) into Eq. (6.12), we have

LW+ K = (4/15)(4 — 0 LW + (2/3)a( LW (6.13)
The solution of this equation, which decays as o — oo, has the form

w = c3 ker ko + cakeiko + cs0Pw + cou( LW, (6.14)

where cs, ..., c¢ are unknown constants.
To determine the constants associated with the particular solution, note from Egs. (5.5) (the definition of
the operator %) and (5.6) that

PLlesa®w + ca(Lw)'] = 2(2es — kcg)w + (des — Kreg)ont! + cso? Low. (6.15)
Hence,

(L + k) [es02w + coo(LW)] = (165 — dk*ee) LW + Sesa( L), (6.16)
so that, comparing this expression with Eq. (6.13), we see that

cs=1/12and (1 — v*)cs = (1/45)(1 + 9?). (6.17)

To determine c3 and ¢4, note by Egs. (3.1), (5.8)—(5.10), (5.14), (6.11), and (6.14) that

eV 4ty —(1/8m)aIna+4/(1/3)(1 ) (1—v) len ! as 2 — 0 (6.18)
and

WM+ w ~ [(1/87) — cs]ln e as o — 0. (6.19)

Thus, if the first-order corrections to the lowest-order approximations to the thickness-averaged dis-
placements are to be finite at the poles,

ex=1/8m, ¢ =0. (6.20)

Finally, substituting Eq. (6.14) into Egs. (6.8) and (6.9) and simplifying using Eqgs. (5.8), (5.14), and
(6.15), we arrive at the following expressions for the first-order corrections to the dimensionless traces of
the stress resultants and couples:

No+ Ny = (1/20)[(1 +v)* ker ka + (1/12) (ka)keiko + (1/15)(1 + 9 )u(ker ka)'
~—(1/21)1+v)’ Ino asox— 0 (6.21)
and
(1= )(Mo + My) = (4/3)[( /40m) (11 — v + 5v)keiko — (1/12)(1 + v) (ko) ker ko + (1/15)

(1 +v)(1+99)aw'] ~ (1/120)y/3(1 — ) (11 —v+5%?) as« — 0. (6.22)



6880 J.G. Simmonds, F.Y.M. Wan | International Journal of Solids and Structures 38 (2001) 68696887

6.1. A note on singularities and shell theory

Although we have required the shell-like kinematic variables u* + &~'/?u, w" + ¢~'w, u, and w to be finite
at the poles, we are forced to accept singularities in our three-dimensional approximations to the meridional
and outward radial displacements. Thus, from Egs. (3.1), (5.8)-(5.10), (5.14), (6.2), (6.4), (6.11), (6.14), and
(6.20),

e Pu = e732uM (2ar) +8*IIOJ(0<,C) + llf(oc,C) +0(e) ~O(™") asa—0 (6.23)

and

w = W (&20) + & (%) + (2, 0) + O() ~ O(In %) as & — 0. (6.24)

These unavoidable singularities are to be expected because the classical Boussinesq solution of isotropic
linear elasticity implies that the deflection is infinite under a concentrated normal load on the surface of a
spherical shell, if viewed as a three-dimensional continuum.

We also observe an interesting phenomenon with the stress resultants and couples: although N 0+ N 18
bounded, its first-order coorrectolon Ny + Ny, has a logarithmic singularity as o — 0; the situation is reversed

with the stress couples: My + M, has a logarithmic singularity as « — 0 whereas its first-order correction is
bounded. However, one must not put too much faith in these singularities, because all bets are off as we
enter a neighborhood where « = O(&'/?) near the concentrated body forces.

The virtue of shell theory is that, by working with unknowns that are through-the-thickness integrals, the
singularities of three-dimensional elasticity are ameliorated, although, of course, not eliminated altogether.
Physically, a linearly elastic solid cannot sustain a point load: in practice the load will be distributed over a
small area and inelastic behavior may occur. By not attempting to provide a picture of thickness distri-
butions, which cannot be accurate anyway except in a mathematical sense (e.g., as Green’s functions), shell
theory, in a way, gives a more physically satisfying, if limited, picture of the behavior of an elastic structure
under concentrated loading.

7. Slab-like solutions

Recall that we may regard the solution of our three-dimensional linear elasticity problem as the sum of
the solutions of three exact subproblems: (1) the membrane-like solution produced by a uniform line load
along the polar axis of the shell; (2) a shell-like solution produced by a body force comprising the negative
of the membrane-like line load plus an equilibrating line load having a thickness distribution along the
polar axis given, to lowest order, by Eq. (5.31); and (3) a slab-like solution produced by the two concen-
trated polar surface loads, each of which is equilibrated by the unknown, non-uniform portion of the shell-
like line load. We now turn to the determination of this latter solution.

As we have noted, very near the poles, the effect of curvature on the behavior of the spherical shell is
secondary and, to a first approximation, slab-like behavior is expected. To tie-in with Simmonds’ (1990)
analysis of the behavior of an infinite plate under vertical, self-equilibrating surface and line loads, we
introduce circular cylindrical coordinates (Rr, Rz, ) and express the horizontal and vertical components of
displacements, (P/GH)(u,,u.), and the non-vanishing physical components of the stress tensor,
(P/H?)(Zp, 2., 2., %), % in terms of a stress function (Love, 1944, p. 276) as

2 These stresses are non-dimensionalized in a different way from those in Section 2.
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2eu, = —y ., 2eu, =2(1 — v)Vz;( — A (7.1)
and
5 =0V 1) Zo=0Vi—ry). (72)
=2V -y, 2=10-0Vi— 2],
In these equations,
5420+ = 140V, V=g T (7.3)

and, if (P/HR?)e(z;¢)0(r)/2mr is the unknown upward vertical body force,
(1 —=)eV2V2y = —ge(z;€)5(r) /2. (7.4)

(See Fung, 1965, p. 197.) Note that [ " e(z;¢)dz = 1.
The boundary conditions, as before, are that the inner and outer surfaces of the shell be stress free except
for the point loads at » = 0, z = £(1 + ¢). In circular cylindrical coordinates, these conditions imply that

—o(r)/2mr, =4y/(1+8)? -1
EPREEL ISP T e =r < (7.5)
0, z=+4/(1—¢)—r

and
P T =r2(2, - Z)+ (-2 =0, z=%\/(1xe -1, 0<r<l. (7.6)

We henceforth focus on the upper half of the spherical shell.
Because all stresses vary as rapidly with radial distance as they do with meridional distance, we introduce
the new scaled independent variables and stress function

r=és, z=1++et, r=e¢(s,te), —1<et<lI. (7.7)
Let

Ap=d+s b+, (7.8)
and

e(z;e) = (14 &) °[(1/2) — F(t;¢)], (7.9)

where F — (1/2) is the dimensionless thickness distribution of the line load that produces the shell-like
solution. Then, because &d(es) = (s), Egs. (7.1), (7.2), and (7.4) take the forms

2u, = _¢,st7 2u, = 2<1 - V)Ad) - ¢,m (7-10)

2, = (VAQS - qs,ss)_ﬁ 2y = (VAd) - Sild).s)‘t (7 11)

2. = [(2 - V)A¢ - ¢,ttlﬁ 2= [(1 - V)A¢ - ¢,tt],s = _l/j‘s’ .
and

(1 —=v)AAP = (1 + &) [F(t;8) — (1/2)]d(s) /2ms. (7.12)

We now assume that all dependent variables have the asymptotic form

0

F(5.8:8) = f(5,0) + &f (5.1) + O(&). (7.13)
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Then, by Eq. (5.31), the basic differential equation (7.12) reads, to lowest order,

0

(1 =v)AAp = 3(£* — 1)5(s)/8ms, (7.14)
whereas the boundary conditions (7.5) and (7.6), to lowest order, read

0 0 _ =

@=nad - { 57 12T 0ssco (7.15)
and

0 00

y=(1-vAp—-¢,=0, 0<s<oo, t==£l (7.16)

In this last equation, we have integrated with respect to s the expression for g coming from the fourth term
of Eq. (7.11) and discarded the resulting constant of integration. Eqs. (7.14)—(7.16) are equivalent to those
for an infinite slab under a downward concentrated load at the origin and an upward, parabolically dis-
tributed, equilibrating line load. The solution may be represented in terms of inverse Hankel transforms, as
in Tranter (1974).

Thus, let

B 1) = #{b(s,0)} = /OOO (s, o(s2)sds, 0< i < oo (7.17)

0
denote the Hankel transform (of order zero) of ¢, where J; is the Bessel function of order zero of the first
kind and 2 is the transform variable. The (formal) inverse of Eq. (7.17) is

0

b(s,8) = AP, 1)} = /Ox b0, 1) Jo(4s)2d2, 0<s < 0. (7.18)

(Although 2 is assumed, initially, to be positive, it may be necessary to move into the complex plane to
obtain convergent integrals. However, we shall proceed formally.) For simplicity, we have dropped the
index “0” on ¢.

Noting that

/ " AG (s, o(s2)sds = — 2B 1) + 67 (4o ), (7.19)
0
we have, on taking the Hankel transforms of Egs. (7.14)—(7.16),
(1 =v)(2'p =222 +¢**) = (3/8m)(¢* — 1), (7.20)
@-wig - -ni = {57, (7.21)
and
U=(1-2q.+v¢y =0, (7.22)

where a dot (e) denotes differentiation with respect to # and ¢, = ¢(4, +1).
The solution of Eq. (7.20) has the form

2 42
& = A; V)sh + BU v)ch € + C(sv)EshE + D(A)Ech e + S0t e —4)
8(1 —v)md

where & = At, sh = sinh, and ch = cosh. Application of the boundary conditions (7.21) and (7.22) yields

(7.23)
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2 —
(2= V)[(4 + D)ch i+ (B+ C)sh i+ Cich/ + Dishi] + (31( )V)AS — (1= v)[(4 + 3D)ch
— V)TTA
23
+ (B+3C)shi+ Cichi+ Dishi] = { 1/20“ } (7.24)

and

(1 —v)(£4shA+Bchi+ Cishi+ DAichi) + % + v[£(4 + 2D)sh 1+ (B+2C)ch A
7

3v B
4(1 —vym2®

Adding and subtracting first Eq. (7.24) at £ = £ and then (7.25) at £ = £/, we obtain the two sets of
simultaneous equations

+ Cishi+ Dichi] + (7.25)

1
AchA+ D]ishl — (1 —2v)chi] = ,
| (= 2jchil =1 (7.26)
Ashj+D(ich/ +2vshi) =0
and
1—v)2-32-
Bshi+ Clichi— (1—2v)shz] = 1=V 3(5 i (7.27)
4(1 —v)mh
2 —
Bch/ + C(2sh/ +2vch ) = —3(7”6. (7.28)
4(1 —v)mi
Thus,
4123 (). + shich2){4,D} = {ich/+ 2vsh i, —sh i} (7.29)
and
4178 (2. — shich A){B,C} = 3(2 = v)(1 —v) '{#*sh . + (1 — 2v)(sh 4 — Ach),shi — Ach 1}
+ 22 {—=(Ash 2+ 2vch2),ch}. (7.30)

Note that 4 and D are odd in A whereas B and C are even, so that, setting £ = Az, we see fromOEq. (7.23)

that ¢ is even in 1. This simple observation has an important (but expected) consequence: ¢(s,z;v) is
transcendentally small as s — oo. This follows immediately from the formal asymptotic expansion (Tranter,
1974, p. 67)

/f )o(s d}_JLO) lf//()+o<sl§>, (7.31)

where, in our case, f = A¢(Z,;v) and is odd in 1, so that every derivative on the right side of Eq. (7.31)
vanishes.

7.1. Solution near the polar axis
There is one final item we need to consider: the behavior of the lowest-order slab-like solutions near the

concentrated loads on the polar axis of the shell. This is governed by the large 4 behavior of the Hankel
transform ¢(4,;v).
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Thus, from Egs. (7.29) and (7.30),

e

A,D} ~ {B,C} ~
{4.D} ~{B,C} ~ T —

{A+2v,—1} as /i — oo, (7.32)

so that Eq. (7.23) has the asymptotic form

(1 =0e 0 344 22— 1)]
~ + as 4 — oo. 7.33
¢ 7 8(1 — v)ni° - (7:33)
Because our main interest is the behavior of the stresses near the concentrated loads, we have, from the
first term of Eq. (7.3), Egs. (7.7), (7.19), (7.22), and (7.33), that as /. — oo,

< < - - - 1
B4 I3 = (1)@ = AP

e 3t
e A1=t) +4(1 —_ v>;\42‘| (734)

and

3[4 —2v+ (1 —v)22(2 - 1)]

b~ (1/2m)(1 — 1)e 1) 7.35

b~ (1721 = 1) Ty (7.35)
Strictly speaking, the inverse transforms of 272 and 2~ do not exist. However, because

H{0(s) /sy =1 and H{Lf(s)} = -2 AH{f(s)}, (7.36)

where £f = s~'[sf"(s)] as in Eq. (5.5), we can identify the inverse transforms of 4> and A~* with functions
f(s) and g(s) such that

Lf=-5(s)/s and L’g=d(s)/s. (7.37)
That is,

S=-Ins+e (7.38)
and

g = (1/4)s*Ins + c5* + c3Ins + ¢y, (7.39)
where ¢y, ..., c4 are unknown constants. As c¢; and ¢, havg no influence on the dominant behavior of fand g

as s — 0, we set them to zero. Moreover, because X° = W, We may ignore c;.
From Eq. (4) on p. 29 of Erdélyi et al. (1954),

1+ 1—1¢ 3tlns
04320430~ — — ass— 0 7.40
7 0 z P [s2 + (1 _ t)2]3/2 4(1 _ V) ( )
and
0 (1—1)? 1
~ + 2¢3+ (1 = v)(1 —#)]lns ass— 0. 7.41
Vet (o s e T (741

To determine c;, note from overall vertical equilibrium that

1 1y
/ X%s,6)dt =0 or Y(s,t)dt =0, (7.42)
1 -1
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because the concentrated surface and body forces in the slab-like solution are self-equilibrating. As the
second term of Eq. (7.42) must hold, in particular, in the limit as s — 0, we find, on using Eq. (7.41), that

3 = (2/3)(1 —v).
The first terms on the right of Egs. (7.40) and (7.41) agree with the Boussinesq solution for a semi-infinite
elastic solid under a concentrated normal load on its boundary (Timoshenko and Goodier, 1970, p. 401).

7.2. Stress resultants and couples

0 0
We end our analysis by considering the sum of the principle stress resultants and couples, (P/H)(N,M),
associated with the lowest-order slab-like solutions, namely,

(N, M) = / (100 + 50(s,1)] 1. (7.43)

Taking Hankel transforms (and dropping the index “0”’), using the first and second terms of Eq. (7.11), and
integrating, we obtain

N=(1-20)(¢, —d_) +2v(¢>" — ¢™) (7.44)
and
M= (1=20)2(, +b_— @)+ 20> + ¢ + ¢ — ), (7.45)

where @ = fil ¢dt. B
To simplify these expressions, we first use the boundary conditions (7.22) to eliminate ¢} so that Egs.
(7.44) and (7.45) reduce to

N=-2(¢, - ) (7.46)
and

M=—[(¢,+¢_)+2v(d5 — ) + (1 —2v) ). (7.47)
To eliminate @, note that the fourth term of Eq. (7.11) and the second term of Eq. (7.42) imply that

2o =v(1—v)'(§" - $7). (7.48)
Hence,

M= —[2($.+ ¢ ) +v(1 —v) (¢ - 7). (7.49)
Substituting Eq. (7.23) into Eqgs. (7.46) and (7.49) and use of Eq. (7.32) yields

N = —2)*(4shJ. + DichJ) = _W%;jchi)rv —% as | — oo (7.50)
and

M = —=2(1—v)""J{B[(1 —v)Ach A+ vshi] + C[(1 — v)2*sh+ v(sh i+ Ach )]}
—(3/2n)(2—v)(1—v)_2/14~—%—ﬁ as A — oo. (7.51)

Because # ' {/7'} =s ' and #~'{1™*} may be identified with a function of the form (7.39),

0 0
N~ —v/ns and M ~ —v/ns as s — 0. (7.52)
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The appearance of a Poisson ratio factor in these expressions strongly suggests a “‘normal stress™ effect.
This is nor surprising considering that it is the normal stresses that must ultimately dominate as we ap-
proach the points of application of the concentrated surface loads.

8. Conclusions

We have shown that three different scalings of the dependent and independent variables of the governing
linear equations for an elastically isotropic spherical shell under equal and opposite concentrated surface
loads suggest that the exact solution is the sum of (i) a membrane-like solution, (ii) a (shallow) shell-like
solution, and (iii) a slab-like solution. Gregory et al. (1999) have presented a simple, exact formulas for (i)
and exact eigenfunction representations for (ii). They also have expanded the latter for small values of H/R
(the half thickness to mid-surface radius ratio) to obtain explicit first-order corrections to solutions of the
classical Kirchhoff-Love shell equations. They left (iii) untouched due to the complicated form of the
solutions. In the present paper, we obtained asymptotic solutions for (ii) and (iii) — (i) was simple enough
that no asymptotics were needed — by working directly with the governing differential equations rather than
with their solutions. This not only made the calculations in (ii) less laborious, but it allowed us to obtain
explicit integral representations (inverse Hankel transforms) for the lowest-order solutions in (iii). These, in
turn, allowed us to determine the correct behavior of the sum of the principal stress resultants and couples
in the immediate neighborhood of the concentrated loads.

Our analysis leaves open several questions, the most important of which, in our opinion, is: can one
show rigorously that the exact solution of the original problem is the unique sum of (i), (i), and (iii)? We
note that Gregory (1992) has proved such a result for the stretching of elastically isotropic plates (where, of
course, there is neither a membrane-like component nor a shell-like component). Rather than attempting to
extend Gregory’s approach, which makes use of the specific form of various types of three-dimensional
solutions, we conjecture that it might be possible to find a (more or less) direct way to characterize the
dimensionless self-equilibrating line load F(;¢) introduced following equation (4.29) that appears in the
equations for the shell-like solutions. All we have shown herein in Eq. (5.31) is that F({;0) is parabolic.
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